Sea $ABC$ un triángulo con $AB\lt AC\lt BC$. Sean $I$ y $\omega$ el incentro y el incírculo del triángulo $ABC$, respectivamente. Sea $X$ el punto de la recta $BC$, diferente de $C$, tal que la recta paralela a $AC$ que pasa por $X$ es tangente a $\omega$. Análogamente, sea $Y$ el punto de la recta $BC$, diferente de $B$, tal que la recta paralela a $AB$ que pasa por $Y$ es tangente a $\omega$. La recta $AI$ corta de nuevo al circuncírculo del triángulo $ABC$ en $P\neq A$. Sean $K$ y $L$ los puntos medios de $AC$ y $AB$, respectivamente. Demostrar que $\angle KIL + \angle YPX = 180^\circ$.