Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1351
Se dice que un entero positivo $N$ es interoceánico si, al descomponer en factores primos $N=p_1^{x_1}p_2^{x_2}\cdots p_k^{x_k}$, se cumple que \[x_1+x_2+\ldots+x_k=p_1+p_2+\ldots+p_k.\] Encontrar todos los números interoceánicos menores que $2020$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre