Sea $S$ una circunferencia y $AB$ un diámetro de ella. Sea $t$ la recta tangente a $S$ en $B$ y sean $C$ y $D$ dos puntos en $t$ tales que $B$ está entre $C$ y $D$. Sean $E$ y $F$ las intersecciones de $S$ con $AC$ y $AD$, respectivamente, y sean $G$ y $H$ las intersecciones de $S$ con $CF$ y $DE$, respectivamente. Demostrar que $AH=AG$.