Sea $ABC$ un triángulo acutángulo y sean $D$ y $E$ los pies de las alturas desde los vértices $A$ y $B$, respectivamente. Demostrar que si
\[\mathrm{Area}(BDE)\leq\mathrm{Area}(DEA)\leq\mathrm{Area}(EAB)\leq\mathrm{Area}(ABD),\]
entonces el triángulo es isósceles.