Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1371
Para cada entero $a\gt 1$, se construye una lista infinita de enteros $L(a)$ como sigue:
  • $a$ es el primer número de la lista $L(a)$.
  • Dado un número $b$ en $L(a)$, el siguiente número en la lista es $b+c$, donde $c$ es el mayor entero que divide a $b$ y es menor que $b$.

Hallar todos los enteros $a\gt 1$ tales que $2002$ está en $L(a)$.

Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre