Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1374
Encontrar todos los números naturales de tres dígitos $abc$ (con $a\neq 0$) tales que $a^2+b^2+c^2$ es un divisor de $26$.
pistasolución 1info
Pista. No te llevará mucho tiempo analizar cada divisor de $26$ por separado.
Solución. Como $26=2\cdot 13$, llegamos fácilmente a que los únicos divisores positivos de 26 son $\{1,2,13,26\}$. Distingamos los cuatro casos:
  • Si $a^2+b^2+c^2=1$, entonces uno de los tres dígitos es igual a 1 y el resto a 0, lo que nos lleva a la única solución $(a,b,c)=(1,0,0)$ ya que debe ser $a\neq 0$.
  • Si $a^2+b^2+c^2=2$, entonces dos de los tres dígitos son iguales a 1 y el tercero a 0, lo que nos da dos soluciones: $(a,b,c)=(1,1,0)$ y $(a,b,c)=(1,0,1)$, de nuevo porque $a\neq 0$.
  • Si $a^2+b^2+c^2=13$, entonces los dígitos están entre 0 y 3, pero no pueden ser todos menores o iguales que 2 puesto que entonces $a^2+b^2+c^2\leq 12$. Por tanto, uno de ellos es 3 y la suma de los cuadrados de los otros dos es 4, lo que lleva claramente a que sean 2 y 0. Tenemos así cuatro posibles soluciones: $(3,2,0)$, $(2,3,0)$, $(3,0,2)$ y $(2,0,3)$ ya que $a\neq 0$.
  • Finalmente, si $a^2+b^2+c^2=26$, todos los dígitos están entre 0 y 5. Si uno de ellos es 5, los otros deben ser 1 y 0. Si uno de ellos es 4, los otros deben ser 3 y 1. Si el mayor es 3, entonces los cuadrados de los otros dos deben sumar 17, pero esto no es posible. Tampoco hay soluciones si el mayor es menor o igual que 2, como en el caso anterior.

En resumen, hemos encontrado los diecisiete números que cumplen la condición del enunciado: 100, 101, 105, 110, 134, 143, 150, 203, 230, 302, 314, 320, 341, 413, 431, 501 y 510.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre