Sean $ABC$ un triángulo acutángulo y $C_1$ y $C_2$ las circunferencias que tienen a los lados $AB$ y $CA$ como diámetros, respectivamente. Supongamos que $C_2$ corta al lado $AB$ en el punto $F$ (con $F\neq A$) y $C_1$
corta al lado $CA$ en el punto $E$ (con $E\neq A$). Además, pongamos que $BE$ corta a $C_2$ en $P$ y $CF$ corta a $C_1$ en $Q$. Demostrar que las longitudes de los segmentos $AP$ y $AQ$ son iguales.