Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1383
Determinar el menor entero positivo $n$ para el cual existan enteros positivos $a_1,a_2,\ldots,a_n$ menores o iguales que $15$ (no necesariamente distintos) tales que los cuatro últimos dígitos de la suma $a_1!+a_2!+\ldots+a_n!$ sean $2001$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre