Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1386
En una pizarra se escriben los números enteros del $1$ al $9$. Dos jugadores $A$ y $B$ juegan por turnos, siendo $A$ el primero en jugar. Cada jugador en su turno escoge uno de los números que quedan en la pizarra y lo borra, junto con todos sus múltiplos (si los hay). El jugador que borra el último número pierde. Determinar si alguno de los dos jugadores tiene una estrategia ganadora y explicar cuál es esa estrategia.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre