Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1390
Sea $ABCD$ un trapecio tal que $AB$ es paralelo a $CD$ y $AB+CD=AD$. Sea $P$ el punto sobre $AD$ tal que $AP=AB$ y $PD=CD$.
  1. Demostrar que $\angle BPC=90^\circ$.
  2. Sean $Q$ el punto medio de $BC$ y $R$ el punto de corte de la recta $AD$ y la circunferencia que pasa por los puntos $B$, $A$ y $Q$, con $R\neq A$. Demostrar que los puntos $B$, $P$, $R$ y $C$ están sobre una misma circunferencia.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre