- Hallar los valores de $x$ para los cuales $\cos x +\,\mathrm{sen}\,x\gt 1$.
- Hallar los valores de $x$ para los cuales $\cos x + |\mathrm{sen}\,x|\gt 1$.
pistasolución 1info
Pista. ¿Qué relación hay entre $\cos(x)+\mathrm{sen}(x)$ y $\mathrm{sen}(x+45^\circ)$?
Solución.
- Si multiplicamos por $\cos(45)=\sin(45)=\frac{\sqrt{2}}{2}$ la ecuación, obtenemos
\[\mathrm{sen}(x+45)=\mathrm{sen}(45)\cos(x)+\cos(45)\mathrm{sen}(x)=\mathrm{sen}(45)(\cos(x)+\mathrm{sen}(x)).\]
Por lo tanto, la desigualdad que queremos probar se traduce en que
\[\mathrm{sen}(x+45^\circ)\gt\cos(45).\]
En el intervalo $[0,360]$, los ángulos cuyo seno es mayor que el seno de $45$ son los del intervalo $(45,135)$, luego la inecuación anterior tiene como soluciones los puntos de los intervalos $(0,90)$, salvo múltiplos de $360$.
- Para $x\in(0,180)$, el seno es positivo, luego tenemos las mismas soluciones del apartado anterior $(0,90)$. Ahora bien, la función $f(x)=\cos(x)+|\mathrm{sen}(x)|$ cumple que $f(-x)=f(x)$ (es par), luego también tenemos las soluciones $(-90,0)$. Si observamos finalmente que $x=0$ no es solución ya que $f(0)=1$ y que $f(x)$ tiene período $360$, tenemos que la respuesta es los intervalos $(-90,0)$ y $(0,90)$, salvo múltiplos enteros de $360$.