Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1427
Es bien sabido que si $\frac{p}{q}=\frac{r}{s}$, entonces ambas razones son iguales a $\frac{p-r}{q-s}$. Escribimos ahora la igualdad \[\frac{3x-b}{3x-5b}=\frac{3a-4b}{3a-8b}.\] Por la propiedad anterior, ambas fracciones deben ser iguales a \[\frac{3x-b-3a+4b}{3x-5b-3a+8b}=\frac{3x-3a+3b}{3x-3a+3b}=1,\] mientras que las propuestas son de ordinario distintas de la unidad. Explicar con claridad a qué se debe este resultado.
pistasolución 1info
Pista. Se está produciendo una indeterminación $\frac{0}{0}$ en algún momento.
Solución. Tenemos que \[\frac{3x-b}{3x-5b}=\frac{3a-4b}{3a-8b}\ \Longleftrightarrow\ (3x-b)(3a-8b)=(3a-4b)(3x-5b)\ \Longleftrightarrow\ b(x-a+b)=0.\] Por lo tanto, con la hipótesis de que ambas razones son iguales, necesariamente $b=0$ (en cuyo caso sí se tiene claramente que ambas son igual a $1$ y no hay paradoja) o bien $x-a+b=0$ (en cuyo caso la última igualdad no es $1$ ya que el denominador es cero y no puede hacerse el razonamiento).

En otras palabras, si $\frac{p}{q}=\frac{r}{s}$ entonces estas razones coinciden con $\frac{p-r}{q-s}$ con la condición adicional de que $q-s$ no sea cero.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre