Sea $\gamma_1$ una circunferencia de radio $r$ y $P$ un punto exterior que dista $a$ de su centro. Se suponen construidas las dos rectas tangentes a $\gamma_1$ desde $P$ y sea $\gamma_2$ una circunferencia de radio menor que el de $\gamma_1$ tangente a esas dos rectas y a $\gamma_1$. En general, una vez construida la circunferencia $\gamma_n$, se construye otra circunferencia $\gamma_{n+1}$ de radio menor que el de $\gamma_n$, tangente a las dos rectas citadas y a $\gamma_n$. Determinar
- El radio de $\gamma_2$.
- La expresión general del radio de $\gamma_n$.
- El límite de la suma de las longitudes de las circunferencias $\gamma_1,\gamma_2,\ldots,\gamma_n,\ldots$