Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
APMO
OMCC
Retos UJA
Selector
La base de datos contiene 2717 problemas y 972 soluciones.
Problema 1434problema obsoleto
Se quiere colgar un peso $P$ de modo que quede $7$ m por debajo de un techo. Para ello se suspende mediante un cable vertical sujeto al punto medio $M$ de una cadena colgada por sus extremos de dos puntos del techo $A$ y $B$ distantes entre sí $4$ m. El precio del cable $PM$ es de $p$ pesetas por metro y el de la cadena $AMB$ es de $q$ pesetas por metro. Se pide:
  1. Determinar las longitudes del cable y de la cadena para obtener el precio más económico de la instalación.
  2. Discutir la solución para los distintos valores de la relación $p/q$ de ambos precios.

Nota: Se supone que el peso es lo suficientemente grande para poder considerar como rectilíneos los segmentos de cadena $AM$ y $MB$.

pistasolución 1info
Pista. Plantea el problema como la minimización de de la función precio.
Solución. Sea $Q$ el punto medio de $AB$ y llamemos $x=QM$, de forma que queremos minimizar el valor de la función \[f(x)=2q\sqrt{x^2+4}+(7-x)p\] cuando $x$ varía en el intervalo $[0,7]$ (aquí hemos usado el teorema de Pitágoras para calcular $AM=MB=\sqrt{x^2+4}$). La función es infinitamente derivable y podemos calcular sus primeras dos derivadas fácilmente: \[f'(x)=\frac{2qx}{\sqrt{x^2+4}}-p,\qquad f''(x)=\frac{8q}{(x^2+4)^{3/2}}.\] Observamos que $f''(x)\gt 0$, luego se trata de una función estrictamente convexa y tendrá un único mínimo absoluto en $\mathbb{R}$ independientemente de los valores de $p$ y $q$. Ahora la observación clave es darse cuenta de que la convexidad también nos dice que en dicho mínimo pasa de decreciente a creciente, luego será suficiente estudiar los valores de la derivada en $x=0$ y $x=7$ para discutir el problema. Tenemos que $f'(0)=-p\lt 0$ y $f'(7)=\frac{14q}{\sqrt{53}}-p$, lo que nos permite distinguir dos casos:
  • Si $\frac{14q}{\sqrt{53}}-p\leq 0$, es decir, $\frac{p}{q}\geq\frac{14}{\sqrt{53}}$, entonces $f(x)$ es estrictamente decreciente en $[0,7]$ y tendrá su mínimo en $x=7$, esto es, en este caso el cable será de longitud $0$.
  • Si $\frac{14q}{\sqrt{53}}-p\gt 0$, es decir, $0\lt\frac{p}{q}\lt\frac{14}{\sqrt{53}}$, entonces $f'(7)\gt 0$ y el mínimo será interior. Podemos resolver $f'(x)=0$ para obtener que este ocurre para $x=\frac{2p}{\sqrt{4q^2-p^2}}$, es decir, cuando el punto $M$ está a esta distancia del techo.
imagen
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre