Problema 1439problema obsoleto Se sabe que la función real $f(t)$ es monótona creciente en el intervalo $−8\leq t\leq 8$, pero no se sabe nada de lo que ocurre fuera de éste. ¿En qué intervalo de valores de $x$ se puede asegurar que sea monótona creciente la función $f(2x-x^2)$?
pistasolución 1info
Pista. Calcula cuándo $g(x)=2x-x^2$ cae en el intervalo $[-8,8]$ y también ten en cuenta su propia monotonía.
Solución. Observamos que la función $g(x)=2x-x^2=1-(x-1)^2$ toma el valor $-8$ en $x=-2$ y $x=4$, pero no toma el valor $8$ ya que tiene su máximo en $x=1$, donde vale $1$. Además, en $[-2,1]$ es creciente y en $[1,4]$ es decreciente. Por lo tanto:
- Fuera del intervalo $(-2,4)$ no sabemos la monotonía de $f(g(x))$ ya que desconocemos lo que le pasa a $f$ fuera del intervalo $[-8,8]$.
- Para $x,y\in[-2,1]$ con $x\lt y$, se tiene que $-8\leq g(x)\leq g(y)\leq 1$, luego $f(g(x))\leq f(g(y))$ y hemos probado que $f(g(x))$ es monótona creciente en $[-2,1]$.
- Para $x,y\in[1,4]$ con $x\lt y$, se tiene que $-8\leq g(y)\leq g(x)\leq 1$, luego $f(g(y))\leq f(g(x))$ y tenemos que $f(g(x))$ es monótona decreciente en $[1,4]$.
Por lo tanto, solo podemos asegurar que $f(2x-x^2)$ es monótona creciente en $[-2,1]$.