Problema 1448problema obsoleto Razonar si puede afirmarse, negarse o no puede decidirse la continuidad en el punto $x = 0$ de una función real $f(x)$ de variable real, en cada uno de los tres casos (independientes):
- Se sabe únicamente que $f(\tfrac{1}{2n})=1$ y $f(\tfrac{-1}{2n})=-1$ para todo $n$ natural.
- Se sabe que $f(x)=x^2$ para $x$ real no negativo y $f(x)=0$ para $x$ real negativo.
- Se sabe únicamente que $f(\tfrac{1}{n})=1$ para todo $n$ natural.
pistasolución 1info
Pista. Razonar con la definición de continuidad: una función es continua en $x=a$ si para todo $\varepsilon\gt 0$, existe $\delta>0$ tal que $|f(x)-f(a)|\lt\varepsilon$ siempre que $|x-a|\lt\delta$.
Solución. Sabemos que una función es continua en $x=0$ si para todo $\varepsilon\gt 0$, existe $\delta>0$ tal que $|f(x)-f(0)|\lt\varepsilon$ siempre que $|x|\lt\delta$. Con esta definición analizaremos los tres casos por separado:
- Supongamos por reducción al absurdo que $f$ es continua. Para $\epsilon=\frac{1}{2}$ deberá existir $\delta\gt 0$ tal que $|f(x)-f(0)|\lt\frac{1}{2}$ siempre que $|x|\lt\delta$. Sin embargo, existe $n\in\mathbb{N}$ tal que $|\frac{1}{2n}|=|\frac{-1}{2n}|\lt\delta$, luego tiene que ser $|f(\frac{1}{2n})-f(0)|\lt\frac{1}{2}$ y $|f(\frac{-1}{2n})-f(0)|\lt\frac{1}{2}$. Como $f(\frac{1}{2n})=1$ y $f(\frac{-1}{2n})=-1$, tendremos que $f(0)$ está a distancia menor que $\frac{1}{2}$ tanto de $1$ como de $-1$, lo cual es imposible por la desigualdad triangular.
- En este caso, la función sí que es continua ya que para cada $\varepsilon >0$ puede tomarse directamente $\delta=\sqrt{\epsilon}$ en la definición de continuidad.
- En este caso no puede decidirse. Si, por ejemplo, fuera $f(x)=1$ para todo $x\in\mathbb{R}$, la función sería continua por ser constante. Si, por el contrario, fuera $f(x)=-1$ para todo $x\neq\frac{1}{n}$, la función no sería continua por el mismo motivo que en el apartado (a).