Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1448problema obsoleto
Razonar si puede afirmarse, negarse o no puede decidirse la continuidad en el punto $x = 0$ de una función real $f(x)$ de variable real, en cada uno de los tres casos (independientes):
  1. Se sabe únicamente que $f(\tfrac{1}{2n})=1$ y $f(\tfrac{-1}{2n})=-1$ para todo $n$ natural.
  2. Se sabe que $f(x)=x^2$ para $x$ real no negativo y $f(x)=0$ para $x$ real negativo.
  3. Se sabe únicamente que $f(\tfrac{1}{n})=1$ para todo $n$ natural.
pistasolución 1info
Pista. Razonar con la definición de continuidad: una función es continua en $x=a$ si para todo $\varepsilon\gt 0$, existe $\delta>0$ tal que $|f(x)-f(a)|\lt\varepsilon$ siempre que $|x-a|\lt\delta$.
Solución. Sabemos que una función es continua en $x=0$ si para todo $\varepsilon\gt 0$, existe $\delta>0$ tal que $|f(x)-f(0)|\lt\varepsilon$ siempre que $|x|\lt\delta$. Con esta definición analizaremos los tres casos por separado:
  1. Supongamos por reducción al absurdo que $f$ es continua. Para $\epsilon=\frac{1}{2}$ deberá existir $\delta\gt 0$ tal que $|f(x)-f(0)|\lt\frac{1}{2}$ siempre que $|x|\lt\delta$. Sin embargo, existe $n\in\mathbb{N}$ tal que $|\frac{1}{2n}|=|\frac{-1}{2n}|\lt\delta$, luego tiene que ser $|f(\frac{1}{2n})-f(0)|\lt\frac{1}{2}$ y $|f(\frac{-1}{2n})-f(0)|\lt\frac{1}{2}$. Como $f(\frac{1}{2n})=1$ y $f(\frac{-1}{2n})=-1$, tendremos que $f(0)$ está a distancia menor que $\frac{1}{2}$ tanto de $1$ como de $-1$, lo cual es imposible por la desigualdad triangular.
  2. En este caso, la función sí que es continua ya que para cada $\varepsilon >0$ puede tomarse directamente $\delta=\sqrt{\epsilon}$ en la definición de continuidad.
  3. En este caso no puede decidirse. Si, por ejemplo, fuera $f(x)=1$ para todo $x\in\mathbb{R}$, la función sería continua por ser constante. Si, por el contrario, fuera $f(x)=-1$ para todo $x\neq\frac{1}{n}$, la función no sería continua por el mismo motivo que en el apartado (a).
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre