En los dos extremos $A$ y $B$ de un diámetro de longitud $2r$ de un pavimento circular horizontal se levantan sendas columnas verticales, de igual altura $h$, cuyos extremos soportan una viga $A'B'$ de longitud igual a $2r$. Se forma una cubierta colocando numerosos cables tensos (que se admite que quedan rectilíneos), uniendo puntos de la viga $A'B'$ con puntos de la circunferencia borde del pavimento, de manera que los cables queden perpendiculares a la viga $A'B'$. ¿Cuál es el volumen encerrado entre la cubierta y el pavimento?