Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1472
Sean $\{a_1,a_2,\ldots,a_n\}$ y $\{b_1,b_2,\ldots,b_n\}$ permutaciones de los números $\{1,\frac{1}{2},\ldots,\frac{1}{n}\}$. Si se cumple que \[a_1+b_1\geq a_2+b_2\geq\ldots\geq a_n+b_n,\] demostrar que $a_m+a_n\geq\frac{4}{m}$ para todo $m$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre