Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1488
Sean $a_1,a_2,\ldots,a_n$ constantes reales y definamos la función \[f(x)=\sum_{k=1}^n\frac{\cos(a_k+x)}{2^{k-1}}.\] Demostrar que si $f(x_1)=f(x_2)=0$, entonces $x_2-x_1$ es un múltiplo entero de $\pi$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre