Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 149
Dado $n\geq 1$, hallar todas las $n$-uplas de números reales $x_1,x_2,\ldots,x_n\geq 1$ tales que \[\sqrt{x_1}+\sqrt[3]{x_2}+\ldots+\sqrt[n+1]{x_n}=\sqrt{n}\sqrt{x_1+x_2+\ldots+x_n}.\]
pistasolución 1info
Pista. Realmente, para cualesquiera $x_1,x_2,\ldots,x_n\geq 1$, una de las desigualdades en la igualdad del enunciado se cumple, luego el problema puede reducirse a estudiar cuándo se alcanza la igualdad en una desigualdad. La desigualdad de Cauchy-Schwarz puede ser útil para terminar el problema.
Solución. Evidentemente, si tomamos $x_1=x_2=\ldots=x_n=1$, tenemos una solución. Veremos ahora que, independientemente de los valores de las variables siempre se tiene una desigualdad $\leq$ en la expresión del enunciado y veremos que la igualdad sólo se alcanza para esta solución.

Aplicando la desigualdad de Cauchy-Schwarz a los vectores \begin{eqnarray*} u&=&\left(\sqrt{x_1},\sqrt[3]{x_2},\ldots,\sqrt[n+1]{x_n}\right)\\ v&=&\left(1,1,\ldots,1\right) \end{eqnarray*} llegamos a que \[\sqrt{x_1}+\sqrt[3]{x_2}+\ldots+\sqrt[n+1]{x_n}\leq\sqrt{n}\sqrt{x_1+x_2^{2/3}+x_3^{2/4}+\ldots+x_n^{2/(n+1)}}\] Ahora bien, como $x_2,\ldots,x_n$ son mayores o iguales que uno que uno, se tiene que $x_k^{2/(k+1)}\leq x_k$ pues $\frac{2}{k+1}\leq 1$. Esto demuestra la desigualdad que queremos y, si la igualdad se alcanza, entonces $x_2=\ldots=x_n=1$ por la última desigualdad y $x_1=1$ por la igualdad en la desigualdad de Cauchy-Schwarz. Deducimos que $x_1=x_2=\ldots=x_n=1$ es la única solución al problema.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre