Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1490
Se tiene una semicircunferencia $\gamma$ con diámetro $AB$ y $C$ un punto sobre $\gamma$ distinto de $A$ y $B$. Sea $D$ el pie de la perpendicular a $AB$ que pasa por $C$. Consideramos tres círculos $\gamma_1,\gamma_2,\gamma_3$ tangentes a la recta $AB$, de forma que $\gamma_1$ está inscrito en el triángulo $ABC$, mientras que $\gamma_2$ y $\gamma_3$ son ambos tangentes a $CD$ y a $\gamma$, uno a cada lado de $CD$. Demostrar que $\gamma_1,\gamma_2,\gamma_3$ tienen una recta tangente común distinta de $AB$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre