Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1492
Demostrar que para cualesquiera números reales $x_1,x_2,y_1,y_2,z_1,z_2$ con $x_1\gt 0$, $x_2\gt 0$ y $x_2y_2-z_2^2\gt 0$, se cumple la desigualdad \[\frac{8}{(x_1+x_2)(y_1+y_2)-(z_1+z_2)^2}\leq \frac{1}{x_1y_1-z_1^2}+\frac{1}{x_2y_2-z_2^2}.\] Dar condiciones necesarias y suficientes para que se alcance la igualdad.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre