Se tienen $n$ puntos en el espacio tales que el triángulo que forman tres cualesquiera de ellos tiene un ángulo mayor que $120^\circ$. Demostrar que los puntos pueden etiquetarse con números enteros del $1$ al $n$ de forma que el ángulo que forman los vértices $i$, $i+1$ e $i+2$ es mayor que $120^\circ$ para todo $1\leq i\leq n-2$.