Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1515
Sabiendo que los polinomios \[\begin{array}{c} 2x^5-13x^4+4x^3+61x^2+20x-25,\\ x^5-4x^4-13x^3+28x^2+85x+50, \end{array}\] tienen dos raíces dobles comunes, determinar todas sus raíces.
pistasolución 1info
Pista. Resta al primer polinomio el doble del segundo para obtener un polinomio de grado 4 que debe ser, salvo un factor constante, un cuadrado perfecto.
Solución. Si al primer polinomio le restamos el doble del segundo obtenemos el polinomio \[-5(x^4-6x^3-x^2+30x+25),\] que también debe tener las mismas raíces comunes a los polinomios originales. Haciendo la división de cada uno de los polinomios dados dentre $x^4-6x^3-x^2+30x+25$, obtenemos que \begin{align*} 2 x^5 - 13 x^4 + 4 x^3 + 61 x^2 + 20 x - 25&=(2x-1)(x^4-6x^3-x^2+30x+25),\\ x^5 - 4 x^4 - 13 x^3 + 28 x^2 + 85 x + 50&=(x+2)(x^4-6x^3-x^2+30x+25) \end{align*} Como se trata de dos raíces dobles, deducimos además $x^4-6x^3-x^2+30x+25$ debe ser un polinomio cuadrado perfecto, luego expresamos \[x^4-6x^3-x^2+30x+25=(x^2+ax+b)^2=x^4+2ax^3+(a^2+2b)x^2+2abx+b^2,\] de donde obtenemos que $a=-3$ y $b=-5$ sin más que comparar coeficientes. Como el polinomio $x^2-3x-5$ tiene raíces $\frac{1}{2}(3\pm\sqrt{29})$, deducimos que estas son las dos raíces dobles comunes a los polinomios originales, mientras que la quinta raíz del primer polinomio es $\frac{1}{2}$ y la quinta raíz del segundo polinomio es $-2$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre