Sea $\{a_0,a_1,\ldots,a_n,\ldots\}$ una sucesión infinita creciente de números reales con $a_0=1$. Para cada entero positivo $n$, definimos el número real
\[b_n=\sum_{k=1}^n\left(1-\frac{a_{k-1}}{a_k}\right)\frac{1}{\sqrt{a_k}}.\]
- Demostrar que $0\leq b_n\leq 2$ para todo natural $n$.
- Dado $c$ con $0\leq c\lt 2$, demostrar que podemos elegir una sucesión inicial $\{a_0,a_1,\ldots,a_n,\ldots\}$ tal que $b_n\gt c$ a partir de un término suficientemente grande.