Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1553problema obsoleto
Sea $\mathbb{K}$ un anillo con unidad y $M$ el conjunto de las matrices $2\times 2$ con elementos en $\mathbb{K}$. Se define en $M$ una suma y un producto de la forma usual entre matrices.
  1. Comprobar que $M$ es un anillo con unidad y no conmutativo respecto de las leyes de composición así definidas.
  2. Comprobar que si $\mathbb{K}$ es un cuerpo conmutativo, los elementos de $M$ que tienen inverso están caracterizados por la condición $ad-bc\neq 0$.
  3. Demostrar que el subconjunto de $M$ formado por los elementos que tienen inverso es un grupo multiplicativo.
pista
Sin soluciones
info
Pista. Para el apartado (a), tienes que comprobar que la suma es asociativa, conmutativa, tiene elemento neutro y cada elemento tiene un elemento opuesto; también tienes que comprobar que el producto es asociativo, tiene elemento neutro y la suma es distributiva respecto de él. No obstante, hay que dar algún ejemplo que muestre que la propiedad conmutativa no es cierta en general. Para el apartado (b), observa que el determinante es multiplicativo. Para el apartado (c), tienes que probar que el producto de matrices regulares es regular, es asociativo, tiene elemento neutro y cada matriz regular tiene una simétrica (su inversa).
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre