Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1565problema obsoleto
Se considera el conjunto de todos los polinomios de grado menor o igual que $4$ con coeficientes racionales.
  1. Probar que tiene estructura de espacio vectorial sobre el cuerpo de los números racionales.
  2. Probar que los polinomios $1$, $x-2$, $(x-2)^2$, $(x-2)^3$ y $(x-2)^4$ forman una base de este espacio.
  3. Expresar el polinomio $7+2x-45x^2+3x^4$ en la base anterior.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre