OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Multiplicando ambos miembros de la ecuación por $\sqrt{x+\sqrt{2x-1}}-\sqrt{x-\sqrt{2x-1}}$, obtenemos \[2x=a\sqrt{x+\sqrt{2x-1}}-a\sqrt{x-\sqrt{2x-1}}.\] Usando esta ecuación y la original, es fácil despejar \begin{align*} \sqrt{x+\sqrt{2x-1}}&=\frac{a^2+2\sqrt{2x-1}}{2a}\\ \sqrt{x-\sqrt{2x-1}}&=\frac{a^2-2\sqrt{2x-1}}{2a} \end{align*} La primera de estas igualdades no nos da información por ahora, pero la segunda nos dice que el miembro de la derecha tiene que ser positivo. Despejando $x$, esto es equivalente a que \[x\lt \frac{1}{2}+\frac{a^4}{8}.\] Observemos también que si $a=\sqrt{2}$ entonces las dos igualdades anteriores se cumplen para cualquier valor de $x$, lo que nos dice que la primera ecuación del enunciado se cumple si, y sólo si, $x\in[\frac{1}{2},\frac{1}{2}+\frac{a^4}{8}]=[\frac{1}{2},1]$.
Vamos a suponer ahora que $a\neq\sqrt{2}$. Elevando al cuadrado las dos igualdades despejadas anteriormente y sumando, llegamos a \[2x=\left(\frac{a^2+2\sqrt{2x-1}}{2a}\right)^2+\left(\frac{a^2-2\sqrt{2x-1}}{2a}\right)^2=\frac{a^4+4(2x-1)}{2a^2}.\] Por lo tanto, podemos expresar esta última condición como la ecuación de primer grado $(8-4a^2)x=4-a^4$. Para $a=1$, la única solución es $x=\frac{3}{4}$... ¡pero no cumple $x\lt \frac{1}{2}+\frac{a^4}{8}=\frac{5}{8}$, luego tenemos que descartarla! Para $a=2$, la única solución es $x=\frac{3}{2}$, que puede comprobarse que cumple la ecuación.
Resumiendo, para $a=\sqrt{2}$, tenemos que las soluciones son los elementos del intervalo $[\frac{1}{2},1]$, para $a=1$ no hay solución y para $a=2$ la única solución es $x=\frac{3}{2}$.