Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1590
El precio de un diamante es proporcional al cuadrado de su peso. Demostrar que, rompiéndolo en dos partes, existe una depreciación de su valor. ¿Cuándo es máxima dicha depreciación?
pistasolución 1info
Pista. Si los trozos pesan $x$ e $y$, tendrás que hallar cuándo $(x+y)^2-x^2-y^2$ es máximo.
Solución. Supongamos que rompemos el diamante de peso $p$ en dos trozos de pesos $x$ e $y$, luego el precio original y el precio tras romperlo son proporcionales a $p^2=(x+y)^2$ y $x^2+y^2$, respectivamente. La depreciación guardará la misma proporción con $(x+y)^2-x^2-y^2=2xy$, luego nos estamos preguntando cuándo será máximo $2xy$ sujetos a la restricción $x+y=p$. De aquí podemos despejar $2xy=2x(p-x)$, con lo que queremos hallar el máximo de la función $f(x)=2x(p-x)$ cuando $0\leq x\leq p$. Esta parábola se anula en $x=0$ y $x=p$, por lo que tendrá su vértice (máximo) en $x=\frac{p}{2}$. Deducimos así que hay romper el diamante en dos partes iguales para que la depreciación sea máxima.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre