Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1595
Demostrar que la suma de los cuadrados de cinco enteros consecutivos no puede ser un cuadrado perfecto.
pistasolución 1info
Pista. Trabaja módulo $5$.
Solución. Si escribimos los cinco enteros como $n-2,n-1,n,n+1,n+2$, obtenemos que \[(n-2)^2+(n-1)^2+n^2+(n+1)^2+(n+2)^2=5(n^2+2).\] Por reducción al absurdo, supondremos que se trata de un cuadrado perfecto, pongamos $a^2$. Como $5(n^2+2)$ es múltiplo de $5$, también deber serlo $a^2$, luego podemos escribir $a=5b$ para cierto entero $b$, lo que nos da $n^2+2=5b^2$. El miembro de la derecha en esta última igualdad es múltiplo de $5$ pero el de la derecha es congruente con $2$, $3$ o $1$ módulo $5$ (puesto que el cuadrado $n^2$ sólo puede ser congruente con $0$, $1$ o $4$ módulo $5$). Así, $n^2+2$ nunca es múltiplo de $5$ y hemos llegado a la contradicción que buscábamos.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre