Solución. Haciendo el cambio de variable $t=x-3$, obtenemos que $\mathrm{d}t=\mathrm{d}x$ y que $t$ se mueve en el intervalo $[-1,1]$ cuando $x$ se mueve en el intervalo $[2,4]$. En definitiva,
\[\int_2^4\mathrm{sen}((x-3)^3)\,\mathrm{d}x=\int_{-1}^1\mathrm{sen}(t^3)\,\mathrm{d}t.\]
Ahora bien, la función $f(t)=\sen(t^3)$ es impar (es decir, cumple que $f(-t)=-f(t)$ y la estamos integrando en el intervalo $[-1,1]$, simétrico respecto del origen, luego la integral que del enunciado vale $0$.
Nota. La función $f(t)=\sen(t^3)$ no tiene una primitiva en términos de funciones elementales, luego no es plausible abordar el problema resolviendo la integral de forma directa.