Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1611problema obsoleto
Hallar la función $f(x)$ que cumple la ecuación \[f'(x)+x^2f(x)=0,\] sabiendo que $f(1)=e$. Representar gráficamente esta función y calcular la tangente en el punto de la curva de abscisa $1$.
pista
Sin soluciones
info
Pista. Observa que $\frac{f'(x)}{f(x)}$ es la derivada de $\ln|f(x)|$. Puedes usar el hecho de que, si dos funciones tienen la misma derivada en todos los puntos de un intervalo, entonces difieren en una constante.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre