Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 168
Encontrar un conjunto infinito de enteros positivos $S$ tal que la suma de los elementos de cualquier subconjunto finito de $S$ no sea un cuadrado perfecto.
pistasolución 1info
Pista. El siguiente cuadrado perfecto después de $m^2$ es $(m+1)^2=m^2+(2m+1)$, lo que deja $2m$ números que no son cuadrados entre ambos: ¿cómo podemos aprovecharnos de ésto?
Solución. Definamos la sucesión de números $\{x_n\}$ como $x_1=2$ y, para $n\geq 2$, \[x_n=(x_1+x_2+\ldots+x_{n-1})^2+1.\] Vamos a probar que el conjunto $S$ formado por todos los números $x_n$ cumple la condición del enunciado. Para ello, tomemos una cantidad finita de ellos $x_{n_1},x_{n_2},\ldots,x_{n_j}$ y demostremos que $N=x_{n_1}+x_{n_2}+\ldots+x_{n_j}$ no es un cuadrado perfecto. Podemos suponer sin perder generalidad que $0\lt n_1\lt n_2\lt\ldots\lt n_j$, luego llamando $A=x_1+x_2+\ldots+x_{n_j-1}$ tenemos que \[A^2\lt x_{n_j}\leq N\leq x_1+x_2+\ldots+x_{n_j}=A^2+A+1\lt (A+1)^2,\] lo que nos dice que $N$ está estrictamente entre dos cuadrados consecutivos y, por tanto, no puede ser un cuadrado como queríamos probar.

Nota. Uno puede preguntarse cómo se le ocurre la solución. El truco está en caer en la cuenta de que el siguiente cuadrado a $m^2$ es $(m+1)^2=m^2+2m+1$. Por tanto, si todo elemento es de la forma $m^2+1$ y entre todos los que son menores que él no suman $2m$, la sucesión cumplirá el enunciado. La forma en que lo hemos hecho es una entre una infinidad de posibilidades.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre