Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1697
Sean $x_1,x_2,\ldots,x_n$ reales positivos cuya suma es $1$ y definimos \[s=\max\left\{\frac{x_1}{1+x_1},\frac{x_2}{1+x_1+x_2},\ldots,\frac{x_n}{1+x_1+x_2+\ldots+x_n}\right\}.\] Determinar el menor valor que puede tomar $s$ y hallar los valores de los números que realizan dicho mínimo.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre