Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 173
Demostrar que si $m$, $n$ y $r$ son enteros positivos tales que \[1+m+n\sqrt{3}=\left(2+\sqrt{3}\right)^{2r-1},\] entonces $m$ es un cuadrado perfecto.
pistasolución 1info
Pista. Algo que puede servir de ayuda: dado un número natural $r$, prueba que el número $m$ es igual a $c_r^2$, donde $c_r$ está dado por la relación recurrente $c_1=1$, $c_2=5$ y $c_r=4c_{r-1}-c_{r-2}$ para $r\geq 3$.
Solución. Escribiremos $\left(2+\sqrt{3}\right)^{2r-1}=a_r+b_r\sqrt{3}$ y probaremos que $a_r=1+c_r^2$ para cierto entero $c_r$. Así, tenemos que \[a_{r+1}+b_{r+1}\sqrt{3}=(2+\sqrt{3})^2(a_r+b_r\sqrt{3})=(7a_r+12b_r)+(4a_r+7b_r)\sqrt{3},\] de donde deducimos las relaciones recurrentes \begin{eqnarray*} a_{r+1}&=&7a_r+12b_r,\\ b_{r+1}&=&4a_r+7b_r. \end{eqnarray*} Esto implica que \begin{eqnarray*} b_{r+1}&=&\frac{1}{2}a_{r+1}+\frac{1}{2}a_{r}+b_{r}\\ b_{r}&=&\frac{1}{2}a_{r}+\frac{1}{2}a_{r-1}+b_{r-1}\\ &\vdots&\\ b_{2}&=&\frac{1}{2}a_{2}+\frac{1}{2}a_{1}+b_{1} \end{eqnarray*} Sumando todas estas igualdades llegamos a que \[b_{r+1}=\frac{1}{2}a_{r+1}+(a_1+a_2+\ldots+a_r).\] Usando esta igualdad y las relaciones recurrentes, no es difícil llegar a que la sucesión $\{a_r\}$ está determinada por $a_1=2$, $a_2=26$ y, para $r\geq 3$, \[a_{r}=14a_{r-1}-a_{r-2}.\] Consideremos ahora la sucesión $\{c_k\}$ definida por $c_1=1$, $c_2=5$ y, para $r\geq 3$, \[c_r=4c_{r-1}-c_{r-2}.\] Habremos terminado si probamos que $a_r=1+c_r^2$, para lo que veremos que la sucesión $\{1+c_r^2\}$ cumple las condiciones de recurrencia de $\{a_r\}$. Es inmediato que $1+c_1^2=a_1$ y $1+c_2^2=a_2$, luego tendremos que probar que $1+c_r^2=14(1+c_{r-1}^2)-(1+c_{r-2}^2)$ para todo $r\geq 3$. Usando la relación de recurrencia de $\{c_r\}$, tenemos que \begin{eqnarray*} 1+c_r^2&=&1+(4c_{r-1}-c_{r-2})^2=1+16c_{r-1}^2+c_{r-2}^2-8c_{r-1}c_{r-2}\\ &=&14(1+c_{r-1}^2)-(1+c_{r-2}^2)+2(c_{r-1}^2+c_{r-2}^2-4c_{r-1}c_{r-2}-6). \end{eqnarray*} Por tanto, si probamos que $c_{r-1}^2+c_{r-2}^2-4c_{r-1}c_{r-2}=6$ para todo $r\geq 3$ habremos terminado. Para esto usaremos inducción. Es fácil ver que para $r=3$ se tiene la igualdad y, supuesta cierta para $r$, para $r+1$ tenemos que \begin{eqnarray*} c_{r}^2+c_{r-1}^2-4c_{r}c_{r-1}&=&(4c_{r-1}-c_{r-2})^2+c_{r-1}^2-4c_{r-1}(4c_{r-1}-c_{r-2})\\ &=&c_{r-1}^2+c_{r-2}^2-4c_{r-1}c_{r-2}=6. \end{eqnarray*}

Esto termina de probar que $a_r=1+c_r^2$ para todo $r\in\mathbb{N}$, con lo que el enunciado está demostrado.

Nota. Sin duda el paso más difícil en esta demostración es sacarse de la manga la sucesión $c_r$. Si uno intuye que la $c_r$ debe cumplir una recurrencia lineal del tipo $c_r=\alpha c_{r-1}+\beta c_{r-2}$, pueden calcularse algunos términos para ver que ha de ser $\alpha=4$ y $\beta=-1$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre