Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 174
Sean $r$, $s$ y $t$ las soluciones de la ecuación $x(x-2)(3x-7)=2$.
  1. Demostrar que $r$, $s$ y $t$ son positivas.
  2. Calcular $\arctan(r)+\arctan(s)+\arctan(t)$.
pistasolución 1info
Pista. Para la primera parte utiliza el teorema de Bolzano y, para la segunda, calcula \[\mathrm{tg}(\mathrm{arctg}(r)+\mathrm{arctg}(s)+\mathrm{arctg}(t))\] utilizando la fórmula de la tangente de una suma.
Solución. La ecuación se puede escribir de forma equivalente como $p(x)=0$, donde $p(x)=3x^3-13x^2+14x-2$. Como $p(x)$ es una función continua y cumple que $p(0)=2$, $p(1)=-2$, $p(2)=-2$ y $p(3)=4$, el teorema de Bolzano nos dice que $p(x)$ tiene una raíz en $(0,1)$, otra en $(1,2)$ y otra en $(2,3)$. Como el polinomio $p(x)$ tiene tres raíces complejas, deducimos que son reales positivas y hemos demostrado el primer apartado.

Para el segundo apartado, vamos a hacer uso de la fórmula de la tangente del la suma. Concretamente, dados $x,y,z\in(0,\frac{\pi}{2})$, de dicha fórmula se deduce que \[\mathrm{tg}(x+y+z)=\frac{\mathrm{tg}(x+y)+\mathrm{tg}(z)}{1-\mathrm{tg}(x+y)\mathrm{tg}(z)}=\frac{\mathrm{tg}(x)+\mathrm{tg}(y)+\mathrm{tg}(z)-\mathrm{tg}(x)\mathrm{tg}(y)\mathrm{tg}(z)}{1-\mathrm{tg}(x)\mathrm{tg}(y)-\mathrm{tg}(y)\mathrm{tg}(z)-\mathrm{tg}(z)\mathrm{tg}(x)}.\] Sustituyendo $x=\mathrm{arctg}(r)$, $y=\mathrm{arctg}(s)$ y $z=\mathrm{arctg}(t)$, tenemos que \[\mathrm{tg}(\mathrm{arctg}(r)+\mathrm{arctg}(s)+\mathrm{arctg}(t))=\frac{(r+s+t)-rst}{1-(rs+st+rt)}=\frac{\frac{13}{3}-\frac{2}{3}}{1-\frac{14}{3}}=-1.\] ya que las relaciones de Cardano para el polinomio $p(x)$ nos aseguran que \[ r+s+t=\frac{13}{3},\quad rs+st+rt=\frac{14}{3},\quad rst=\frac{2}{3}. \] Esto nos dice que existe un número entero $k$ tal que \[\mathrm{arctg}(r)+\mathrm{arctg}(s)+\mathrm{arctg}(t)=-\frac{\pi}{4}+k\pi.\] Como $r,s,t\gt 0$, tenemos que $0\lt \mathrm{arctg}(r)+\mathrm{arctg}(s)+\mathrm{arctg}(t)\lt\frac{3\pi}{2}$, de donde $k=1$ y \[\mathrm{arctg}(r)+\mathrm{arctg}(s)+\mathrm{arctg}(t)=\frac{3\pi}{4}.\]

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre