Sea $ABC$ un triángulo cuyos lados son $a$, $b$ y $c$. Se divide cada lado de $ABC$ en $n$ segmentos iguales. Sea $S$ la suma de los cuadrados de las distancias de cada vértice a cada uno de los puntos de división del lado opuesto, distintos de los vértices. Demostrar que
\[\frac{S}{a^2+b^2+c^2}\]
es un número racional.
Solución. Comencemos pensando en los $n-1$ segmentos que parten del vértice $A$ y llamémoslos $\ell_1,\ldots,\ell_{n-1}$, siendo $\ell_1$ el más cercano al lado $b$. Si llamamos $P_j$ al extremo de $\ell_j$ sobre el lado $BC$, tendremos que $BP_j=\frac{j}{n}a$ y $CP_j=\frac{n-j}{n}a$. Aplicando el teorema del coseno a los triángulos $ABP_j$ y $ACP_j$, obtenemos las igualdades
\begin{eqnarray*}
c^2&=&\ell_j^2+\left(\frac{n-j}{n}a\right)^2-2\ell_j\frac{n-j}{n}a\cos(\theta),\\
b^2&=&\ell_j^2+\left(\frac{j}{n}a\right)^2-2\ell_j\frac{j}{n}a\cos(180-\theta),
\end{eqnarray*}
donde $\theta=\angle AP_jC$. Multiplicando la primera ecuación por $j$ y sumándole la segunda multiplicada por $n-j$ (observamos que $\cos(180-\theta)=-\cos(\theta)$), podemos despejar $\ell_j^2$ como
\[\ell_j^2=\frac{j}{n}c^2+\frac{n-j}{n}b^2-\frac{j(n-j)}{n^2}a^2.\]
Las siguientes funciones auxiliares:
\[r(n)=\sum_{j=1}^{n-1}\frac{j}{n},\qquad s(n)=\sum_{j=1}^{n-1}\frac{j(n-j)}{n^2}\]
toman valores racionales y nos permiten escribir
\[\sum_{j=1}^{n-1}\ell_j^2=r(n)(b^2+c^2)-s(n)a^2.\]
Así tenemos controlada la suma de los cuadrados de las distancias del vértice $A$ a los puntos de división del lado opuesto. Si ahora repetimos el mismo argumento en los otros dos vértices y sumamos las tres cantidades obtenemos
\[S=[2r(n)-s(n)](a^2+b^2+c^2).\]
Como $2r(n)-s(n)$ es un número racional para todo $n\in\mathbb{N}$, tenemos demostrado el enunciado.
Nota. Realmente, podemos calcular
\[r(n)=\sum_{j=1}^{n-1}\frac{j}{n}=\frac{1}{n}\sum_{j=1}^{n-1}j=\frac{n-1}{2}\]
\[s(n)=\sum_{j=1}^{n-1}\frac{j(n-j)}{n^2}=\frac{1}{n}\sum_{j=1}^{n-1}j-\frac{1}{n^2}\sum_{j=1}^{n-1}j^2=\frac{n-1}{2}-\frac{(n-1)(2n-1)}{6n},\]
lo que nos dice que
\[\frac{S}{a^2+b^2+c^2}=2r(n)-s(n)=(n-1)-\frac{n-1}{2}+\frac{(n-1)(2n-1)}{6n}=\frac{(n-1)(5n-1)}{6n}.\]