Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 175
Sea $ABC$ un triángulo cuyos lados son $a$, $b$ y $c$. Se divide cada lado de $ABC$ en $n$ segmentos iguales. Sea $S$ la suma de los cuadrados de las distancias de cada vértice a cada uno de los puntos de división del lado opuesto, distintos de los vértices. Demostrar que \[\frac{S}{a^2+b^2+c^2}\] es un número racional.
pistasolución 1info
Pista. Calcula explícitamente cada una de las distancias al cuadrado en términos de $a^2$, $b^2$ y $c^2$ y después suma todas ellas.
Solución. Comencemos pensando en los $n-1$ segmentos que parten del vértice $A$ y llamémoslos $\ell_1,\ldots,\ell_{n-1}$, siendo $\ell_1$ el más cercano al lado $b$. Si llamamos $P_j$ al extremo de $\ell_j$ sobre el lado $BC$, tendremos que $BP_j=\frac{j}{n}a$ y $CP_j=\frac{n-j}{n}a$. Aplicando el teorema del coseno a los triángulos $ABP_j$ y $ACP_j$, obtenemos las igualdades \begin{eqnarray*} c^2&=&\ell_j^2+\left(\frac{n-j}{n}a\right)^2-2\ell_j\frac{n-j}{n}a\cos(\theta),\\ b^2&=&\ell_j^2+\left(\frac{j}{n}a\right)^2-2\ell_j\frac{j}{n}a\cos(180-\theta), \end{eqnarray*} donde $\theta=\angle AP_jC$. Multiplicando la primera ecuación por $j$ y sumándole la segunda multiplicada por $n-j$ (observamos que $\cos(180-\theta)=-\cos(\theta)$), podemos despejar $\ell_j^2$ como \[\ell_j^2=\frac{j}{n}c^2+\frac{n-j}{n}b^2-\frac{j(n-j)}{n^2}a^2.\] Las siguientes funciones auxiliares: \[r(n)=\sum_{j=1}^{n-1}\frac{j}{n},\qquad s(n)=\sum_{j=1}^{n-1}\frac{j(n-j)}{n^2}\] toman valores racionales y nos permiten escribir \[\sum_{j=1}^{n-1}\ell_j^2=r(n)(b^2+c^2)-s(n)a^2.\] Así tenemos controlada la suma de los cuadrados de las distancias del vértice $A$ a los puntos de división del lado opuesto. Si ahora repetimos el mismo argumento en los otros dos vértices y sumamos las tres cantidades obtenemos \[S=[2r(n)-s(n)](a^2+b^2+c^2).\] Como $2r(n)-s(n)$ es un número racional para todo $n\in\mathbb{N}$, tenemos demostrado el enunciado.

Nota. Realmente, podemos calcular \[r(n)=\sum_{j=1}^{n-1}\frac{j}{n}=\frac{1}{n}\sum_{j=1}^{n-1}j=\frac{n-1}{2}\] \[s(n)=\sum_{j=1}^{n-1}\frac{j(n-j)}{n^2}=\frac{1}{n}\sum_{j=1}^{n-1}j-\frac{1}{n^2}\sum_{j=1}^{n-1}j^2=\frac{n-1}{2}-\frac{(n-1)(2n-1)}{6n},\] lo que nos dice que \[\frac{S}{a^2+b^2+c^2}=2r(n)-s(n)=(n-1)-\frac{n-1}{2}+\frac{(n-1)(2n-1)}{6n}=\frac{(n-1)(5n-1)}{6n}.\]

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre