Dados cuatro números reales $a,b,A,B$, consideramos la función
\[f(\theta)=1-a\cos(\theta)-b\,\mathrm{sen}(\theta)-A\cos(2\theta)-B\,\mathrm{sen}(2\theta).\]
Demostrar que si $f(\theta)\geq 0$ para todo número real $\theta$, entonces $a^2+b^2\leq 2$ y $A^2+B^2\leq 1$.