Solución. Supongamos que las longitudes de los lados son $a=\ell-d$, $b=\ell$ y $c=\ell+d$, siendo $\ell\gt 0$ y $d\geq 0$. Si llamamos $S$ al área del triángulo, sabemos que
\[2S=a\cdot h_a=b\cdot h_b=c\cdot h_c.\]
Esto nos dice que las alturas están ordenadas en orden opuesto al de los lados, es decir, $h_a=x+k$, $h_b=x$ y $h_c=x-k$ para ciertos $x\gt 0$ y $k\geq 0$. Usando la fórmula anterior del área, tenemos que
\[\ell x-dx+\ell k- dk=(\ell-d)(x+k)=\ell x=(\ell+d)(x-k)=\ell x+dx-\ell k-dk.\]
Podemos restar $\ell x-kd$ y queda
\[\ell k-dx=dk=-(\ell k-dx),\]
y deducimos que $dk=0$. Por tanto, $d=0$, de donde es inmediato que $a=b=c$ y el triángulo es equilátero; o bien $k=0$, de donde $h_a=h_b=h_c$ y el triángulo también es equilátero.