Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1772
Sea $ABC$ un triángulo acutángulo y sean $M$ y $n$ los puntos medios de $AB$ y $AC$, respectivamente. Dado un punto $D$ en el interior del segmento $BC$ tal que $DB\lt DC$, sean $P$ y $Q$ las intersecciones de $DM$ y $DN$ con $AC$ y $AB$, respectivamente. Sea $R\neq A$ el punto de intersección de las circunferencias circunscritas de los triángulos $PAQ$ y $AMN$. Si $K$ es el punto medio de $AR$, demostrar que $\angle MKN=2\angle BAC$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre