Coloreamos algunos puntos del plano de rojo de forma que si $P$ y $Q$ están coloreados y $X$ es un punto tal que el triángulo $PQX$ tiene ángulos de $30^\circ,60^\circ,90^\circ$ (en algún orden), entonces $X$ también está coloreado. Si tenemos tres puntos $A,B,C$ coloreados, demostrar que el baricentro del triángulo $ABC$ también está coloreado.