Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 178
Hallar todas las funciones $f:\mathbb{N}\rightarrow\mathbb{N}$ estrictamente crecientes y tales que, para todo $n\in\mathbb{N}$, \[f(n+f(n))=2f(n).\]
pistasolución 1info
Pista. Si llamamos $f(1)=a$, ¿qué puedes deducir del hecho de que $f(a+1)=2a$? Piensa que la función es estrictamente creciente, es decir, si $n\gt m$, entonces $f(n)\gt f(m)$.
Solución. Si llamamos $f(1)=a$, la ecuación del enunciado nos dice que $f(a+1)=2a$. Como $f$ es estrictamente creciente, y en los intervalos $[1,a+1]$ y $[a,2a]$ hay exactamente $a$ números enteros, deducimos que $f(2)=a+1$, $f(3)=a+2$,... hasta $f(a+1)=2a$. En otras palabras, $f(n)=a-1+n$ siempre que $1\leq n\leq a+1$. Sustituyendo ahora $n=a+1$ en la ecuación del enunciado, tenemos que $f(3a+1)=4a$ y, como hay $2a+1$ números tanto en el intervalo del dominio $[a+1,3a+1]$ como en el de la imagen $[2a,4a]$, deducimos que $f(a+2)=2a+1$, $f(a+3)=2a+2$,... hasta $f(3a+1)=4a$, luego $f(n)=a-1+n$ siempre que $1\leq n\leq 3a+1$. Repitiendo el proceso se deduce que $f(n)=a-1+n$ para todo $n\in\mathbb{N}$, de donde deducimos que toda función que cumpla el enunciado ha de ser de esta forma. Como estas funciones lo cumplen (¡comprobarlo!), deducimos que son las únicas.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre