Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1812
Sean $x_1,x_2,\ldots,x_n$ números reales tales que $x_1^2+x_2^2+\ldots+x_n^2=1$. Demostrar que, para todo $k\geq 2$, existen enteros $a_1,a_2,\ldots,a_n$ no todos iguales a cero tales que $|a_i|\leq k-1$ para todo $i$ y \[|a_1x_1+a_2x_2+\ldots+a_nx_n|\leq\frac{(k-1)\sqrt{n}}{k^n-1}\]
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre