Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 182
Consideremos $d_1\lt d_2\lt\ldots\lt d_k$ los divisores positivos de un número natural $n$, de forma que $d_1=1$ y $d_k=n$, y sea \[d=d_1d_2+d_2d_3+\ldots+d_{k-1}d_k.\] Demostrar que $d\lt n^2$ y hallar todos los valores de $n$ para los que $d$ divide a $n^2$.
pistasolución 1info
Pista. Observa que $\frac{n}{d_i}$ también es un divisor de $n$ y utiliza esto para reescribir $d$. Ahora utiliza que $d_i\geq i$ para acotar $d$.
Solución. Observemos que si $d_i$ es un divisor de $n$, entonces $\frac{n}{d_i}$ es otro divisor de $n$, y además $\frac{n}{d_i}\lt\frac{n}{d_j}$ si $d_j\lt d_i$ (es decir, los $\frac{n}{d_i}$ están ordenados de forma inversa a los $d_i$). Por tanto, tenemos que $d_1=\frac{n}{d_k}$, $d_2=\frac{n}{d_{k-1}}$ y así sucesivamente hasta $d_k=\frac{n}{d_1}$. Esto nos permite reescribir \[d=\frac{n^2}{d_kd_{k-1}}+\frac{n^2}{d_{k-1}d_{k-2}}+\ldots+\frac{n^2}{d_2d_1}=n^2\left(\frac{1}{d_kd_{k-1}}+\frac{1}{d_{k-1}d_{k-2}}+\ldots+\frac{1}{d_2d_1}\right),\] por lo que bastará ver que esta última suma de fracciones es menor o igual que $1$. No obstante, observemos que $d_i\geq i$ para todo $i\in\{1,\ldots,k\}$, lo que nos dice que \[\frac{d}{n^2}=\frac{1}{d_kd_{k-1}}+\frac{1}{d_{k-1}d_{k-2}}+\ldots+\frac{1}{d_2d_1}\leq\frac{1}{k(k-1)}+\frac{1}{(k-1)(k-2)}+\ldots+\frac{1}{2\cdot 1}.\] Ahora bien, podemos expresar cada uno de estos sumandos como \[\frac{1}{i(i-1)}=\frac{1}{i-1}-\frac{1}{i}.\] Sustituyendo cada uno de ellos en la expresión anterior, llegamos a que \[\frac{d}{n^2}\leq \frac{1}{k-1}-\frac{1}{k}+\frac{1}{k-2}-\frac{1}{k-1}+\ldots+\frac{1}{1}-\frac{1}{2}=1-\frac{1}{k}\lt 1,\] con lo que hemos demostrado que $d\lt n^2$.

Veamos ahora cuándo $d$ divide a $n^2$. El mayor divisor de $n^2$ distinto del propio $n^2$ es $d_kd_{k-1}=n d_{k-1}$ (¿por qué?) luego, si la suma que define $d$ tiene más de un sumando, se tendría que $d_kd_{k-1}\lt d\lt n^2$, lo que nos dice que $d$ no es divisor de $n^2$ (es menor que $n^2$ y mayor que su mayor divisor propio). Por tanto, para que $d$ divida a $n^2$ es necesario que $k=2$, es decir, que $n$ tenga sólo dos divisores, es decir, que $n$ sea un número primo. Como en el caso de $n$ primo tenemos que $d=n$ divide a $n ^2$, deducimos que los primos son los únicos que cumplen dicha condición.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre