OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Por tanto, descartando las soluciones constantes $f(x)=0$ y $f(x)=\frac{1}{2}$, podemos suponer que $f(0)=0$ y $f(1)=1$. Tomando $x=y=1$ en la ecuación original, llegamos a que \[2f(u)+2f(v)=f(u+v)+f(u-v),\] y, para $u=0$, tenemos que $f(v)=f(-v)$, es decir, $f$ es una función par. Usando esto y tomando $x=u$ e $y=-v$ en la ecuación original, obtenemos que \[f(u^2+v^2)=\bigl(f(u)+f(v)\bigr)^2.\] En particular, tenemos que $f(x)\geq 0$ para todo $x\geq 0$, luego podemos considerar la función auxiliar $g:[0,\infty)\to[0,\infty)$ dada por $g(x)=\sqrt{f(x)}$. Tomando $a=u^2$ y $b=v^2$, la ecuación anterior se escribe como \[g(a+b)=\sqrt{f(u^2+v^2)}=f(\sqrt{a})+f(\sqrt{b})=\sqrt{f(a)}+\sqrt{f(b)}=g(a)+g(b),\] donde hemos usado que $f(x^2)=f(x\cdot x)=f(x)^2$ y, por tanto, $\sqrt{f(x)}=f(\sqrt{x})$ para todo $x\geq 0$. Ahora bien, esto nos dice que $g$ es aditiva luego existe $m\in\mathbb{N}$ tal que $g(x)=m\cdot x$ para todo $x\in\mathbb{Q}$, $x\gt 0$ y, como $g(1)=\sqrt{f(1)}=1$, tenemos que $m=1$. Si demostramos que $f$ es creciente en $[0,\infty)$, entonces también lo será $g$ y, por tanto, $g(x)=x$ para todo $x\in[0,\infty)$, luego $f(x)=x^2$ para todo $x\in[0,\infty)$ y, como $f$ es par, $f(x)=x^2$ para todo $x\in\mathbb{R}$.
Veamos entonces que $f$ es creciente y habremos terminado. Para ello, dados $a\geq b\geq 0$, expresando $a=u^2+v^2$, $b=u^2$ para ciertos $u,v\in\mathbb{R}$, y usando lo que hemos probado anteriormente, tenemos que \[f(a)=f(u^2+v^2)=\bigl(f(u)+f(v)\bigr)^2=f(u^2)+2f(uv)+f(v^2)\geq f(u^2)=f(b),\] donde hemos usado que $f$ es multiplicativa.
Deducimos que las únicas soluciones son $f(x)=0$, $f(x)=\frac{1}{2}$ y $f(x)=x^2$, Puede comprobarse fácilmente que verifican la ecuación inicial.