Determinar todos los enteros $n\gt 3$ para los que existen $n$ puntos $A_1,A_2,\ldots,A_n$ en el plano tales que no hay tres alineados, y números reales $r_1,r_2,\ldots,r_n$ tales que el area del triángulo $A_iA_jA_k$ es igual a $r_i+r_j+r_k$ para todo $1\leq i\lt j\lt k\leq n$.