Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 186
La función $g$ se define sobre los números naturales y cumple las siguientes tres condiciones:
  • $g(2)=1$,
  • $g(2n)=g(n)$,
  • $g(2n+1)=g(2n)+1$.
Hallar el valor máximo $M$ de $g(n)$ para $1\leq n\leq 2002$ y determinar cuántos valores de $n$ en este rango cumplen que $g(n)=M$.
pistasolución 1info
Pista. Si expresas $n$ en base $2$, ¿cómo puedes calcular fácilmente $g(n)$?
Solución. En primer lugar, el hecho de saber que $g(n)$ se define sobre los números pares e impares nos hace pensar en utilizar la base $2$ para expresar la función. Calculando unos cuantos términos $g(n)$ y expresando $n$ en base $2$, parece que $g(n)$ es la suma de las cifras de $n$ en base $2$ y esto será lo que probemos por inducción completa.

Está claro que, para $n=1$ ó $n=2$, $g(1)=g(2)=1$, con lo cual se cumple el caso base. Dado $n\in\mathbb{N}$, supongamos ahora que $g(j)$ es la suma de los dígitos de $j$ para $1\leq j\lt n$ y probémoslo para $n$. Tendremos que distinguir casos dependiendo de si $n$ es par o impar:

  • Si $n$ es par, entonces $n=2j$ para algún $j$, luego $g(n)=g(2j)=g(j)$. Ahora bien, los dígitos de $n$ en base $2$ son los de $j$ a los que se ha añadido un cero al final, luego $g(n)$ también es la suma de los dígitos de $n$ en base $2$.
  • Si $n$ es impar, entonces $n=2j+1$ para algún $j$, luego $g(n)=g(2j+1)=g(2j)+1=g(j)+1$. Como los dígitos de $n$ en base $2$ son los de $j$ a los que se ha añadido un uno al final, tendremos que $g(n)$ es la suma de los dígitos de $n$ en base $2$.
Visto esto, el problema se reduce a saber cuál es el número $n\leq 2002$ con mayor suma de dígitos en base $2$ o, equivalentemente, con mayor número de unos en base $2$. El primer número que tiene $k$ unos en base $2$ es $2^k-1$. Como $2^{10}-1=1023\lt 2002$ y $2^{11}-1=2047\gt 2002$, deducimos que $M=10$.

Falta por ver cuántos números $n\leq 2002$ tienen exactamente $10$ unos en base $2$. No obstante, como dichos números tienen a lo sumo $11$ cifras, los posibles candidatos son los que tienen exactamente un cero, que son los de la forma $2^{11}-2^{i}-1$ para $0\leq i\leq 10$.

  • Para $i\leq 5$ tenemos que $2^{11}-2^{i}-1\geq 2^{11}-2^5-1=2015$.
  • Para $i\geq 6$ tenemos que $2^{11}-2^{i}-1\leq 2^{11}-2^6-1=1983$.
Por tanto, los números buscados son los que se obtienen para $6\leq i\leq 10$ y, deducimos que hay exactamente cinco números que alcanzan el máximo.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre