Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1864
Sea $ABCDEF$ un hexágono convexo tal que $AB$ es paralelo a $DE$, $BC$ es paralelo a $DF$ y $CD$ es paralelo a $FA$. Sean $R_A,R_C,R_E$ los circunradios de los triángulos $FAB,BCD,DEF$, respectivamente, y sea $p$ el perímetro del hexágono. Demostrar que \[R_A+R_B+R_C\geq\frac{p}{2}.\]
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre