Sean $CAMN$ y $NMDB$ cuadriláteros cíclicos y supongamos que $AB$ es una tangente común a sus circunferencias circunscritas, siendo $M$ un punto interior del segmento $CD$ y $CD$ paralela a $AB$. Las cuerdas $NA$ y $CM$ se cortean $P$ y las cuerdas $NB$ y $MD$ se cortan en $Q$. Si las rectas $CA$ y $BD$ se cortan en $E$, demostrar que $PE=QE$.