Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1914
Sea $ABCD$ un cuadrilátero convexo que tiene los lados $BC$ y $AD$ iguales y no paralelos. Sean $E$ y $F$ puntos en los lados $BC$ y $AD$, respectivamente, que satisfacen $BE=DF$. Las rectas $AC$ y $BD$ se cortan en $P$, las rectas $BD$ y $EF$ se cortan en $Q$ y las rectas $EF$ y $AC$ se cortan en $R$. Consideremos todos los triángulos $PQR$ que se forman cuando $E$ y $F$ varían. Demuestre que las circunferencias circunscritas a esos triángulos tienen en común otro punto además de $P$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre